

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. General Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER—DSC1AT / DSC2AT / DSC3AT

DIFFERENTIAL CALCULUS

Full Marks: 60

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

THEORY: DSC1AT

Answer any four questions.

 4×12

1. (a) Using Rolle's Theorem, find a point on the curve

y = sinx + cosx - 1, x $\in \left[0, \frac{\pi}{2}\right]$, where the tangent is parallel to the x-axis.

(b) Find the n^{th} derivative of $tan^{-1}t$.

6+6

- **2.** (a) Let $f: R \to R$ be such that f(x+y) = f(x) + f(y) for all x, y in R. Show that f(x) = ax, where x is an integer and f(1) = a.
 - (b) If $y = a \cos(\log x) + b \sin(\log x)$, x > 0 then prove that (i) $x^2y_2 + xy_1$ + y = 0 and (ii) x^2y_{n+2} + $(2n+1)xy_{n+1}$ + $(n^2 + 1)y_n$ = 0.
- 3. (a) Determine whether the following function from R to R is differentiable and if differentiable find the derivative : f(x) = 1 - |x - 1|.
 - (b) Give an example of a function where it can be shown that the conditions of the Rolle's theorem are sufficient but not necessary.
 - (c) Find the Maclaurin's series for the function $f(x) = \sin x$. 4+4+4
- 4. (a) State and proof the Taylor's theorem with Lagrange form of remainder.
 - (b) If a and b are distinct real numbers show that there exists a real number c between a and b such that $a^2 + ab + b^2 = 3c^2$.
 - (c) Determine the stationary point of $x^{\overline{x}}$. 5+3+4
- **5.** (a) Evaluate : $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{4}{5x}}$ (b) If $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ then show that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x dy} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{\left(1 - \frac{1}{2}\sin^{2} u\right)\cos u}{\sin u}.$$
 5+7

6. (a) If
$$V = ax^2 + 2hxy + by^2$$
 then show that

$$\left(\frac{\partial V}{\partial x}\right)^2 \frac{\partial^2 V}{\partial y^2} - 2 \frac{\partial V}{\partial x} \frac{\partial^2 V}{\partial x \partial y} + \frac{\partial V}{\partial y} \frac{\partial^2 V}{\partial x^2} = 6(ab - h^2)V.$$

- (b) If ρ_1 and ρ_2 be the radii of curvature at the end point P and D of conjugate diameters of the ellipse, prove that ${\rho_1}^{2/3}+{\rho_2}^{2/3}=\frac{\left(a^2+b^2\right)}{\left(ab\right)^{2/3}}$.
- 7. (a) Verify Euler's Theorem when $u(x, y) = \frac{x(x^3 y^3)}{x^3 + y^3}$
 - (b) Find the points on the parabola $y^2 = 8x$ at which the radius of curvature is $\frac{125}{16}$.
- **8.** (a) If $x\cos\alpha + y\sin\alpha = p$ be the tangent of the curve $x^my^n = \alpha^{m+n}$, then prove that $p^{m+n}m^nn^m = (m+n)^{m+n}\alpha^{m+n}\cos^m\alpha\sin^n\alpha$.

(b) Prove,
$$x - \frac{x^3}{6} < \sin x < x - \frac{x^3}{6} + \frac{x^5}{120}$$
, for all $x > 0$.

Answer any
$$six$$
 questions. 6×2

9. Evaluate : $\lim_{x \to \infty} \frac{1}{1 + n \sin^2 nx}$.

- **10.** If f(x) = 2|x| + |x+2|, examine the existence of f'(x) at x = 2.
- **11.** If f(x) be differentiable at x = a, show that

$$\lim_{x \to a} \frac{(x+a)f(x) - 2af(a)}{x - a} = f(a) + 2af'(a)$$

- **12.** Find y_n where $y = e^t \sin^2 t$.
- **13.** Prove that $\sin x < x < \tan x$ when $x \in \left(0, \frac{\pi}{2}\right)$.
- 14. Define essenetial discontinuity with an illustrated example.
- **15.** If u = f(y z, z x, x y) then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- **16.** Find the radius of curvature of the parabola $y^2 = 4ax$ at the vertex.
- **17.** Find the equation of the line that is tangent to the graph of $y = \sqrt{x} \frac{1}{\sqrt{x}} at \ x = 1.$
- **18.** If |x| < 1, what is the coefficient of x^2 in the expression $\frac{\log_e(1+x)}{(1-x)^2}$.